1
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider two G.Ps. 2, 22, 23, ..... and 4, 42, 43, .... of 60 and n terms respectively. If the geometric mean of all the 60 + n terms is $${(2)^{{{225} \over 8}}}$$, then $$\sum\limits_{k = 1}^n {k(n - k)} $$ is equal to :

A
560
B
1540
C
1330
D
2600
2
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the function $$f(x) = \left\{ {\matrix{ {{{{{\log }_e}(1 - x + {x^2}) + {{\log }_e}(1 + x + {x^2})} \over {\sec x - \cos x}}} & , & {x \in \left( {{{ - \pi } \over 2},{\pi \over 2}} \right) - \{ 0\} } \cr k & , & {x = 0} \cr } } \right.$$ is continuous at x = 0, then k is equal to:

A
1
B
$$-$$1
C
e
D
0
3
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x) = \left\{ {\matrix{ {x + a} & , & {x \le 0} \cr {|x - 4|} & , & {x > 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {x + 1} & , & {x < 0} \cr {{{(x - 4)}^2} + b} & , & {x \ge 0} \cr } } \right.$$ are continuous on R, then $$(gof)(2) + (fog)( - 2)$$ is equal to :

A
$$-$$10
B
10
C
8
D
$$-$$8
4
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x) = \left\{ {\matrix{ {{x^3} - {x^2} + 10x - 7,} & {x \le 1} \cr { - 2x + {{\log }_2}({b^2} - 4),} & {x > 1} \cr } } \right.$$.

Then the set of all values of b, for which f(x) has maximum value at x = 1, is :

A
($$-$$6, $$-$$2)
B
(2, 6)
C
$$[ - 6, - 2) \cup (2,6]$$
D
$$\left[ {-\sqrt 6 , - 2} \right) \cup \left( {2,\sqrt 6 } \right]$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12