If for some $$\mathrm{p}, \mathrm{q}, \mathrm{r} \in \mathbf{R}$$, not all have same sign, one of the roots of the equation $$\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right) x^{2}-2 \mathrm{q}(\mathrm{p}+\mathrm{r}) x+\mathrm{q}^{2}+\mathrm{r}^{2}=0$$ is also a root of the equation $$x^{2}+2 x-8=0$$, then $$\frac{\mathrm{q}^{2}+\mathrm{r}^{2}}{\mathrm{p}^{2}}$$ is equal to ____________,
The number of 5-digit natural numbers, such that the product of their digits is 36 , is __________.
The number of distinct real roots of the equation $$x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$$ is ______________.
If $$\mathrm{n}(2 \mathrm{n}+1) \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}} \mathrm{d} x=1177 \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}+1} \mathrm{~d} x$$, then $$\mathrm{n} \in \mathbf{N}$$ is equal to ______________.