Let $$\mathrm{Q}$$ and $$\mathrm{R}$$ be two points on the line $$\frac{x+1}{2}=\frac{y+2}{3}=\frac{z-1}{2}$$ at a distance $$\sqrt{26}$$ from the point $$P(4,2,7)$$. Then the square of the area of the triangle $$P Q R$$ is ___________.
Three masses $$M=100 \mathrm{~kg}, \mathrm{~m}_{1}=10 \mathrm{~kg}$$ and $$\mathrm{m}_{2}=20 \mathrm{~kg}$$ are arranged in a system as shown in figure. All the surfaces are frictionless and strings are inextensible and weightless. The pulleys are also weightless and frictionless. A force $$\mathrm{F}$$ is applied on the system so that the mass $$\mathrm{m}_{2}$$ moves upward with an acceleration of $$2 \mathrm{~ms}^{-2}$$. The value of $$\mathrm{F}$$ is :
( Take $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$ )
A parallel beam of light of wavelength $$900 \mathrm{~nm}$$ and intensity $$100 \,\mathrm{Wm}^{-2}$$ is incident on a surface perpendicular to the beam. The number of photons crossing $$1 \mathrm{~cm}^{2}$$ area perpendicular to the beam in one second is :
In Young's double slit experiment, the fringe width is $$12 \mathrm{~mm}$$. If the entire arrangement is placed in water of refractive index $$\frac{4}{3}$$, then the fringe width becomes (in mm):