1
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A point $$P$$ moves so that the sum of squares of its distances from the points $$(1,2)$$ and $$(-2,1)$$ is 14. Let $$f(x, y)=0$$ be the locus of $$\mathrm{P}$$, which intersects the $$x$$-axis at the points $$\mathrm{A}$$, $$\mathrm{B}$$ and the $$y$$-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to :

A
$${9 \over 2}$$
B
$${{3\sqrt {17} } \over 2}$$
C
$${{3\sqrt {17} } \over 4}$$
D
9
2
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The length of the perpendicular from the point $$(1,-2,5)$$ on the line passing through $$(1,2,4)$$ and parallel to the line $$x+y-z=0=x-2 y+3 z-5$$ is :

A
$$\sqrt{\frac{21}{2}}$$
B
$$\sqrt{\frac{9}{2}}$$
C
$$\sqrt{\frac{73}{2}}$$
D
1
3
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\overrightarrow{\mathrm{a}}=\alpha \hat{i}+\hat{j}-\hat{k}$$ and $$\overrightarrow{\mathrm{b}}=2 \hat{i}+\hat{j}-\alpha \hat{k}, \alpha>0$$. If the projection of $$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$$ on the vector $$-\hat{i}+2 \hat{j}-2 \hat{k}$$ is 30, then $$\alpha$$ is equal to :

A
$$\frac{15}{2}$$
B
8
C
$$\frac{13}{2}$$
D
7
4
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$$ be three mutually exclusive events such that $$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{2+3 \mathrm{p}}{6}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{2-\mathrm{p}}{8}$$ and $$\mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{1-\mathrm{p}}{2}$$. If the maximum and minimum values of $$\mathrm{p}$$ are $$\mathrm{p}_{1}$$ and $$\mathrm{p}_{2}$$, then $$\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$$ is equal to :

A
$$\frac{2}{3}$$
B
$$\frac{5}{3}$$
C
$$\frac{5}{4}$$
D
1
JEE Main Papers
2023
2021
EXAM MAP