1
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f(x) = \left\{ {\matrix{ {x + a} & , & {x \le 0} \cr {|x - 4|} & , & {x > 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {x + 1} & , & {x < 0} \cr {{{(x - 4)}^2} + b} & , & {x \ge 0} \cr } } \right.$$ are continuous on R, then $$(gof)(2) + (fog)( - 2)$$ is equal to :

A
$$-$$10
B
10
C
8
D
$$-$$8
2
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x) = \left\{ {\matrix{ {{x^3} - {x^2} + 10x - 7,} & {x \le 1} \cr { - 2x + {{\log }_2}({b^2} - 4),} & {x > 1} \cr } } \right.$$.

Then the set of all values of b, for which f(x) has maximum value at x = 1, is :

A
($$-$$6, $$-$$2)
B
(2, 6)
C
$$[ - 6, - 2) \cup (2,6]$$
D
$$\left[ {-\sqrt 6 , - 2} \right) \cup \left( {2,\sqrt 6 } \right]$$
3
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $${{dy} \over {dx}} + 2y\tan x = \sin x,\,0 < x < {\pi \over 2}$$ and $$y\left( {{\pi \over 3}} \right) = 0$$, then the maximum value of $$y(x)$$ is :

A
$${1 \over 8}$$
B
$${3 \over 4}$$
C
$${1 \over 4}$$
D
$${3 \over 8}$$
4
JEE Main 2022 (Online) 26th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A point $$P$$ moves so that the sum of squares of its distances from the points $$(1,2)$$ and $$(-2,1)$$ is 14. Let $$f(x, y)=0$$ be the locus of $$\mathrm{P}$$, which intersects the $$x$$-axis at the points $$\mathrm{A}$$, $$\mathrm{B}$$ and the $$y$$-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to :

A
$${9 \over 2}$$
B
$${{3\sqrt {17} } \over 2}$$
C
$${{3\sqrt {17} } \over 4}$$
D
9
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12