The number of distinct real roots of the equation $$x^{5}\left(x^{3}-x^{2}-x+1\right)+x\left(3 x^{3}-4 x^{2}-2 x+4\right)-1=0$$ is ______________.
If $$\mathrm{n}(2 \mathrm{n}+1) \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}} \mathrm{d} x=1177 \int_{0}^{1}\left(1-x^{\mathrm{n}}\right)^{2 \mathrm{n}+1} \mathrm{~d} x$$, then $$\mathrm{n} \in \mathbf{N}$$ is equal to ______________.
The equations of the sides $$\mathrm{AB}, \mathrm{BC}$$ and $$\mathrm{CA}$$ of a triangle $$\mathrm{ABC}$$ are $$2 x+y=0, x+\mathrm{p} y=15 \mathrm{a}$$ and $$x-y=3$$ respectively. If its orthocentre is $$(2, a),-\frac{1}{2}<\mathrm{a}<2$$, then $$\mathrm{p}$$ is equal to ______________.
Let the function $$f(x)=2 x^{2}-\log _{\mathrm{e}} x, x>0$$, be decreasing in $$(0, \mathrm{a})$$ and increasing in $$(\mathrm{a}, 4)$$. A tangent to the parabola $$y^{2}=4 a x$$ at a point $$\mathrm{P}$$ on it passes through the point $$(8 \mathrm{a}, 8 \mathrm{a}-1)$$ but does not pass through the point $$\left(-\frac{1}{a}, 0\right)$$. If the equation of the normal at $$P$$ is : $$\frac{x}{\alpha}+\frac{y}{\beta}=1$$, then $$\alpha+\beta$$ is equal to ________________.