The standard entropy change for the reaction
4Fe(s) + 3O2(g) $$\to$$ 2Fe2O3(s) is $$-$$550 J K$$-$$1 at 298 K.
[Given : The standard enthalpy change for the reaction is $$-$$165 kJ mol$$-$$1]. The temperature in K at which the reaction attains equilibrium is _____________. (Nearest Integer)
1 L aqueous solution of H2SO4 contains 0.02 m mol H2SO4. 50% of this solution is diluted with deionized water to give 1 L solution (A). In solution (A), 0.01 m mol of H2SO4 are added. Total m mols of H2SO4 in the final solution is ___________ $$\times$$ 103 m mols.
The standard free energy change ($$\Delta$$G$$^\circ$$) for 50% dissociation of N2O4 into NO2 at 27$$^\circ$$C and 1 atm pressure is $$-$$ x J mol$$-$$1. The value of x is ___________. (Nearest Integer)
[Given : R = 8.31 J K$$-$$1 mol$$-$$1, log 1.33 = 0.1239 ln 10 = 2.3]
In a cell, the following reactions take place
$$\matrix{ {F{e^{2 + }} \to F{e^{3 + }} + {e^ - }} & {E_{F{e^{3 + }}/F{e^{2 + }}}^o = 0.77\,V} \cr {2{I^ - } \to {I_2} + 2{e^ - }} & {E_{{I_2}/{I^ - }}^o = 0.54\,V} \cr } $$
The standard electrode potential for the spontaneous reaction in the cell is x $$\times$$ 10$$-$$2 V 298 K. The value of x is ____________. (Nearest Integer)