Let the abscissae of the two points P and Q be the roots of $$2{x^2} - rx + p = 0$$ and the ordinates of P and Q be the roots of $${x^2} - sx - q = 0$$. If the equation of the circle described on PQ as diameter is $$2({x^2} + {y^2}) - 11x - 14y - 22 = 0$$, then $$2r + s - 2q + p$$ is equal to __________.
Let $$f:R \to R$$ be a function defined by
$$f(x) = {\left( {2\left( {1 - {{{x^{25}}} \over 2}} \right)(2 + {x^{25}})} \right)^{{1 \over {50}}}}$$. If the function $$g(x) = f(f(f(x))) + f(f(x))$$, then the greatest integer less than or equal to g(1) is ____________.
Let A be a 3 $$\times$$ 3 matrix having entries from the set {$$-$$1, 0, 1}. The number of all such matrices A having sum of all the entries equal to 5, is ___________.
If $$Z = {{{A^2}{B^3}} \over {{C^4}}}$$, then the relative error in Z will be :