If $${1 \over {2\,.\,{3^{10}}}} + {1 \over {{2^2}\,.\,{3^9}}} + \,\,.....\,\, + \,\,{1 \over {{2^{10}}\,.\,3}} = {K \over {{2^{10}}\,.\,{3^{10}}}}$$, then the remainder when K is divided by 6 is :
Let f(x) be a polynomial function such that $$f(x) + f'(x) + f''(x) = {x^5} + 64$$. Then, the value of $$\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$$ is equal to:
Let E1 and E2 be two events such that the conditional probabilities $$P({E_1}|{E_2}) = {1 \over 2}$$, $$P({E_2}|{E_1}) = {3 \over 4}$$ and $$P({E_1} \cap {E_2}) = {1 \over 8}$$. Then :
Let $$A = \left[ {\matrix{ 0 & { - 2} \cr 2 & 0 \cr } } \right]$$. If M and N are two matrices given by $$M = \sum\limits_{k = 1}^{10} {{A^{2k}}} $$ and $$N = \sum\limits_{k = 1}^{10} {{A^{2k - 1}}} $$ then MN2 is :