Let $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$ $${a_i} > 0$$, $$i = 1,2,3$$ be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of $$\overrightarrow a $$ on the vector $$3\widehat i + 4\widehat j$$ be 7. Let $$\overrightarrow b $$ be a vector obtained by rotating $$\overrightarrow a $$ with 90$$^\circ$$. If $$\overrightarrow a $$, $$\overrightarrow b $$ and x-axis are coplanar, then projection of a vector $$\overrightarrow b $$ on $$3\widehat i + 4\widehat j$$ is equal to:
Let $$y = y(x)$$ be the solution of the differential equation $$(x + 1)y' - y = {e^{3x}}{(x + 1)^2}$$, with $$y(0) = {1 \over 3}$$. Then, the point $$x = - {4 \over 3}$$ for the curve $$y = y(x)$$ is :
If the solution curve $$y = y(x)$$ of the differential equation $${y^2}dx + ({x^2} - xy + {y^2})dy = 0$$, which passes through the point (1, 1) and intersects the line $$y = \sqrt 3 x$$ at the point $$(\alpha ,\sqrt 3 \alpha )$$, then value of $${\log _e}(\sqrt 3 \alpha )$$ is equal to :
Let $$x = 2t$$, $$y = {{{t^2}} \over 3}$$ be a conic. Let S be the focus and B be the point on the axis of the conic such that $$SA \bot BA$$, where A is any point on the conic. If k is the ordinate of the centroid of the $$\Delta$$SAB, then $$\mathop {\lim }\limits_{t \to 1} k$$ is equal to :