1
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$\int\limits_0^\pi {{{{e^{\cos x}}\sin x} \over {(1 + {{\cos }^2}x)({e^{\cos x}} + {e^{ - \cos x}})}}dx} $$ is equal to:

A
$${{{\pi ^2}} \over 4}$$
B
$${{{\pi ^2}} \over 2}$$
C
$${\pi \over 4}$$
D
$${\pi \over 2}$$
2
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f : N $$\to$$ R be a function such that $$f(x + y) = 2f(x)f(y)$$ for natural numbers x and y. If f(1) = 2, then the value of $$\alpha$$ for which

$$\sum\limits_{k = 1}^{10} {f(\alpha + k) = {{512} \over 3}({2^{20}} - 1)} $$

holds, is :

A
2
B
3
C
4
D
6
3
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let A be a 3 $$\times$$ 3 real matrix such that

$$A\left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right) = \left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right);A\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right) = \left( {\matrix{ { - 1} \cr 0 \cr 1 \cr } } \right)$$ and $$A\left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right) = \left( {\matrix{ 1 \cr 1 \cr 2 \cr } } \right)$$.

If $$X = {({x_1},{x_2},{x_3})^T}$$ and I is an identity matrix of order 3, then the system $$(A - 2I)X = \left( {\matrix{ 4 \cr 1 \cr 1 \cr } } \right)$$ has :

A
no solution
B
infinitely many solutions
C
unique solution
D
exactly two solutions
4
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let f : R $$\to$$ R be defined as $$f(x) = {x^3} + x - 5$$. If g(x) is a function such that $$f(g(x)) = x,\forall 'x' \in R$$, then g'(63) is equal to ________________.

A
$${1 \over {49}}$$
B
$${3 \over {49}}$$
C
$${43 \over {49}}$$
D
$${91 \over {49}}$$
JEE Main Papers
2023
2021
EXAM MAP