1
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = \left| {x - 2} \right|$$ and g(x) = f(f(x)), $$x \in \left[ {0,4} \right]$$. Then
$$\int\limits_0^3 {\left( {g(x) - f(x)} \right)} dx$$ is equal to:
A
1
B
0
C
$${1 \over 2}$$
D
$${3 \over 2}$$
2
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{\left( {{x \over {x\sin x + \cos x}}} \right)}^2}dx} $$ is equal to
(where C is a constant of integration):
A
$$\sec x - {{x\tan x} \over {x\sin x + \cos x}} + C$$
B
$$\sec x + {{x\tan x} \over {x\sin x + \cos x}} + C$$
C
$$\tan x - {{x\sec x} \over {x\sin x + \cos x}} + C$$
D
$$\tan x + {{x\sec x} \over {x\sin x + \cos x}} + C$$
3
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ (a > b) be a given ellipse, length of whose latus rectum is 10. If its eccentricity is the maximum value of the function,
$$\phi \left( t \right) = {5 \over {12}} + t - {t^2}$$, then a2 + b2 is equal to :
A
145
B
126
C
135
D
116
4
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation,
xy'- y = x2(xcosx + sinx), x > 0. if y ($$\pi $$) = $$\pi $$ then
$$y''\left( {{\pi \over 2}} \right) + y\left( {{\pi \over 2}} \right)$$ is equal to :
A
$$1 + {\pi \over 2}$$
B
$$2 + {\pi \over 2} + {{{\pi ^2}} \over 4}$$
C
$$2 + {\pi \over 2}$$
D
$$1 + {\pi \over 2} + {{{\pi ^2}} \over 4}$$
JEE Main Papers
2023
2021
EXAM MAP