1
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$\alpha $$ and $$\beta $$ be the roots of x2 - 3x + p=0 and $$\gamma $$ and $$\delta $$ be the roots of x2 - 6x + q = 0. If $$\alpha, \beta, \gamma, \delta $$ form a geometric progression.Then ratio (2q + p) : (2q - p) is:
A
9 : 7
B
5 : 3
C
3 : 1
D
33 :31
2
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f be a twice differentiable function on (1, 6). If f(2) = 8, f’(2) = 5, f’(x) $$ \ge $$ 1 and f''(x) $$ \ge $$ 4, for all x $$ \in $$ (1, 6), then :
A
f(5) $$ \le $$ 10
B
f(5) + f'(5) $$ \ge $$ 28
C
f(5) + f'(5) $$ \le $$ 26
D
f'(5) + f''(5) $$ \le $$ 20
3
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f\left( x \right) = \int {{{\sqrt x } \over {{{\left( {1 + x} \right)}^2}}}dx\left( {x \ge 0} \right)} $$. Then f(3) – f(1) is eqaul to :
A
$$ - {\pi \over {12}} + {1 \over 2} + {{\sqrt 3 } \over 4}$$
B
$$ {\pi \over {12}} + {1 \over 2} - {{\sqrt 3 } \over 4}$$
C
$$ - {\pi \over 6} + {1 \over 2} + {{\sqrt 3 } \over 4}$$
D
$${\pi \over 6} + {1 \over 2} - {{\sqrt 3 } \over 4}$$
4
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = \left| {x - 2} \right|$$ and g(x) = f(f(x)), $$x \in \left[ {0,4} \right]$$. Then
$$\int\limits_0^3 {\left( {g(x) - f(x)} \right)} dx$$ is equal to:
A
1
B
0
C
$${1 \over 2}$$
D
$${3 \over 2}$$
JEE Main Papers
2023
2021
EXAM MAP