1
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f\left( x \right) = \int {{{\sqrt x } \over {{{\left( {1 + x} \right)}^2}}}dx\left( {x \ge 0} \right)} $$. Then f(3) – f(1) is eqaul to :
A
$$ - {\pi \over {12}} + {1 \over 2} + {{\sqrt 3 } \over 4}$$
B
$$ {\pi \over {12}} + {1 \over 2} - {{\sqrt 3 } \over 4}$$
C
$$ - {\pi \over 6} + {1 \over 2} + {{\sqrt 3 } \over 4}$$
D
$${\pi \over 6} + {1 \over 2} - {{\sqrt 3 } \over 4}$$
2
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = \left| {x - 2} \right|$$ and g(x) = f(f(x)), $$x \in \left[ {0,4} \right]$$. Then
$$\int\limits_0^3 {\left( {g(x) - f(x)} \right)} dx$$ is equal to:
A
1
B
0
C
$${1 \over 2}$$
D
$${3 \over 2}$$
3
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{\left( {{x \over {x\sin x + \cos x}}} \right)}^2}dx} $$ is equal to
(where C is a constant of integration):
A
$$\sec x - {{x\tan x} \over {x\sin x + \cos x}} + C$$
B
$$\sec x + {{x\tan x} \over {x\sin x + \cos x}} + C$$
C
$$\tan x - {{x\sec x} \over {x\sin x + \cos x}} + C$$
D
$$\tan x + {{x\sec x} \over {x\sin x + \cos x}} + C$$
4
JEE Main 2020 (Online) 4th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$ (a > b) be a given ellipse, length of whose latus rectum is 10. If its eccentricity is the maximum value of the function,
$$\phi \left( t \right) = {5 \over {12}} + t - {t^2}$$, then a2 + b2 is equal to :
A
145
B
126
C
135
D
116
JEE Main Papers
2023
2021
EXAM MAP