1
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : [0,1] $$ \to $$ R be such that f(xy) = f(x).f(y), for all x, y $$ \in $$ [0, 1], and f(0) $$ \ne $$ 0. If y = y(x) satiesfies the differential equation, $${{dy} \over {dx}}$$ = f(x) with y(0) = 1, then y$$\left( {{1 \over 4}} \right)$$ + y$$\left( {{3 \over 4}} \right)$$ is equal to :
A
3
B
4
C
2
D
5
2
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If  x = sin$$-$$1(sin10) and y = cos$$-$$1(cos10), then y $$-$$ x is equal to :
A
0
B
10
C
7$$\pi $$
D
$$\pi $$
3
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For each x$$ \in $$R, let [x] be the greatest integer less than or equal to x.

Then $$\mathop {\lim }\limits_{x \to {0^ - }} \,\,{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]} \over {\left| x \right|}}$$ is equal to :
A
$$-$$ sin 1
B
1
C
sin 1
D
0
4
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let  $$\overrightarrow a = \widehat i + \widehat j + \sqrt 2 \widehat k,$$   $$\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + \sqrt 2 \widehat k$$,    $$\overrightarrow c = 5\widehat i + \widehat j + \sqrt 2 \widehat k$$   be three vectors such that the projection vector of $$\overrightarrow b $$ on $$\overrightarrow a $$ is $$\overrightarrow a $$.
If   $$\overrightarrow a + \overrightarrow b $$   is perpendicular to $$\overrightarrow c $$ , then $$\left| {\overrightarrow b } \right|$$ is equal to :
A
$$\sqrt {32} $$
B
6
C
$$\sqrt {22} $$
D
4
JEE Main Papers
2023
2021
EXAM MAP