1
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A data consists of n observations : x1, x2, . . . . . . ., xn.    

If     $$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 1} \right)}^2}} = 9n$$    and

$$\sum\limits_{i = 1}^n {{{\left( {{x_i} - 1} \right)}^2}} = 5n,$$

then the standard deviation of this data is :
A
2
B
$$\sqrt 5 $$
C
5
D
$$\sqrt 7 $$
2
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $$f\left( x \right) = \int {{{5{x^8} + 7{x^6}} \over {{{\left( {{x^2} + 1 + 2{x^7}} \right)}^2}}}} \,dx,\,\left( {x \ge 0} \right),$$

$$f\left( 0 \right) = 0,$$    then the value of $$f(1)$$ is :
A
$$ - $$ $${1 \over 2}$$
B
$$ - $$ $${1 \over 4}$$
C
$${1 \over 2}$$
D
$${1 \over 4}$$
3
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If   $$A = \left[ {\matrix{ {{e^t}} & {{e^{ - t}}\cos t} & {{e^{ - t}}\sin t} \cr {{e^t}} & { - {e^{ - t}}\cos t - {e^{ - t}}\sin t} & { - {e^{ - t}}\sin t + {e^{ - t}}co{\mathop{\rm s}\nolimits} t} \cr {{e^t}} & {2{e^{ - t}}\sin t} & { - 2{e^{ - t}}\cos t} \cr } } \right]$$

then A is :
A
invertible for all t$$ \in $$R.
B
invertible only if t $$=$$ $$\pi $$
C
not invertible for any t$$ \in $$R
D
invertible only if t $$=$$ $${\pi \over 2}$$.
4
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the lines x = ay + b, z = cy + d and x = a'z + b', y = c'z + d' are perpendicular, then :
A
ab'  +  bc'  +  1  =  0
B
cc'  +  a   +  a'  =  0
C
bb'  +  cc'  +  1  =  0
D
aa'  +  c  +  c'  =  0
JEE Main Papers
2023
2021
EXAM MAP