1
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For each x$$ \in $$R, let [x] be the greatest integer less than or equal to x.

Then $$\mathop {\lim }\limits_{x \to {0^ - }} \,\,{{x\left( {\left[ x \right] + \left| x \right|} \right)\sin \left[ x \right]} \over {\left| x \right|}}$$ is equal to :
A
$$-$$ sin 1
B
1
C
sin 1
D
0
2
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let  $$\overrightarrow a = \widehat i + \widehat j + \sqrt 2 \widehat k,$$   $$\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + \sqrt 2 \widehat k$$,    $$\overrightarrow c = 5\widehat i + \widehat j + \sqrt 2 \widehat k$$   be three vectors such that the projection vector of $$\overrightarrow b $$ on $$\overrightarrow a $$ is $$\overrightarrow a $$.
If   $$\overrightarrow a + \overrightarrow b $$   is perpendicular to $$\overrightarrow c $$ , then $$\left| {\overrightarrow b } \right|$$ is equal to :
A
$$\sqrt {32} $$
B
6
C
$$\sqrt {22} $$
D
4
3
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A hyperbola has its centre at the origin, passes through the point (4, 2) and has transverse axis of length 4 along the x-axis. Then the eccentricity of the hyperbola is :
A
$${3 \over 2}$$
B
$$\sqrt 3 $$
C
2
D
$${2 \over {\sqrt 3 }}$$
4
JEE Main 2019 (Online) 9th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red, is :
A
$${{21} \over {49}}$$
B
$${{27} \over {49}}$$
C
$${{26} \over {49}}$$
D
$${{32} \over {49}}$$
JEE Main Papers
2023
2021
EXAM MAP