1
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
For x $$ \in $$ (0, 3/2), let f(x) = $$\sqrt x $$ , g(x) = tan x and h(x) = $${{1 - {x^2}} \over {1 + {x^2}}}$$. If $$\phi $$ (x) = ((hof)og)(x), then $$\phi \left( {{\pi \over 3}} \right)$$ is equal to :
A
$$\tan {{7\pi } \over {12}}$$
B
$$\tan {{11\pi } \over {12}}$$
C
$$\tan {\pi \over {12}}$$
D
$$\tan {{5\pi } \over {12}}$$
2
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int {{{2{x^3} - 1} \over {{x^4} + x}}} dx$$ is equal to :
(Here C is a constant of integration)
A
$${\log _e}{{\left| {{x^3} + 1} \right|} \over {{x^2}}} + C$$
B
$${1 \over 2}{\log _e}{{\left| {{x^3} + 1} \right|} \over {{x^2}}} + C$$
C
$${\log _e}\left| {{{{x^3} + 1} \over x}} \right| + C$$
D
$${1 \over 2}{\log _e}{{{{\left( {{x^3} + 1} \right)}^2}} \over {\left| {{x^3}} \right|}} + C$$
3
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$B = \left[ {\matrix{ 5 & {2\alpha } & 1 \cr 0 & 2 & 1 \cr \alpha & 3 & { - 1} \cr } } \right]$$ is the inverse of a 3 × 3 matrix A, then the sum of all values of $$\alpha $$ for which det(A) + 1 = 0, is :
A
2
B
- 1
C
0
D
1
4
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If three of the six vertices of a regular hexagon are chosen at random, then the probability that the triangle formed with these chosen vertices is equilateral is :
A
$${1 \over {10}}$$
B
$${3 \over {10}}$$
C
$${3 \over {20}}$$
D
$${1 \over {5}}$$
JEE Main Papers
2023
2021
EXAM MAP