1
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha $$ and $$\beta $$ are the roots of the quadratic equation,
x2 + x sin $$\theta $$ - 2 sin $$\theta $$ = 0, $$\theta \in \left( {0,{\pi \over 2}} \right)$$, then
$${{{\alpha ^{12}} + {\beta ^{12}}} \over {\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right).{{\left( {\alpha - \beta } \right)}^{24}}}}$$ is equal to :
A
$${{{2^{12}}} \over {{{\left( {\sin \theta - 8} \right)}^6}}}$$
B
$${{{2^6}} \over {{{\left( {\sin \theta + 4} \right)}^{12}}}}$$
C
$${{{2^{12}}} \over {{{\left( {\sin \theta + 8} \right)}^{12}}}}$$
D
$${{{2^{12}}} \over {{{\left( {\sin \theta - 4} \right)}^{12}}}}$$
2
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
All the pairs (x, y) that satisfy the inequality
$${2^{\sqrt {{{\sin }^2}x - 2\sin x + 5} }}.{1 \over {{4^{{{\sin }^2}y}}}} \le 1$$
also satisfy the equation
A
sin x = |sin y|
B
sin x = 2sin y
C
2 sin x = sin y
D
2 |sin x | = 3 sin y
3
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The region represented by| x – y | $$ \le $$ 2 and | x + y| $$ \le $$ 2 is bounded by a :
A
rhombus of area 8$$\sqrt 2 $$ sq. units
B
square of side length 2$$\sqrt 2 $$ units
C
square of area 16 sq. units
D
rhombus of side length 2 units
4
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If$$f(x) = \left\{ {\matrix{ {{{\sin (p + 1)x + \sin x} \over x}} & {,x < 0} \cr q & {,x = 0} \cr {{{\sqrt {x + {x^2}} - \sqrt x } \over {{x^{{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}}}} & {,x > 0} \cr } } \right.$$
is continuous at x = 0, then the ordered pair (p, q) is equal to
A
$$\left( { - {3 \over 2}, - {1 \over 2}} \right)$$
B
$$\left( { - {1 \over 2},{3 \over 2}} \right)$$
C
$$\left( { - {3 \over 2}, {1 \over 2}} \right)$$
D
$$\left( { {5 \over 2}, {1 \over 2}} \right)$$
JEE Main Papers
2023
2021
EXAM MAP