1
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If the length of the perpendicular from the point ($$\beta $$, 0, $$\beta $$) ($$\beta $$ $$ \ne $$ 0) to the line,
$${x \over 1} = {{y - 1} \over 0} = {{z + 1} \over { - 1}}$$ is $$\sqrt {{3 \over 2}} $$, then $$\beta $$ is equal to :
A
2
B
1
C
-2
D
-1
2
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If y = y(x) is the solution of the differential equation
$${{dy} \over {dx}} = \left( {\tan x - y} \right){\sec ^2}x$$, $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$,
such that y (0) = 0, then $$y\left( { - {\pi \over 4}} \right)$$ is equal to :
A
$${1 \over 2} - e$$
B
$$e - 2$$
C
$$2 + {1 \over e}$$
D
$${1 \over e} - 2$$
3
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If a > 0 and z = $${{{{\left( {1 + i} \right)}^2}} \over {a - i}}$$, has magnitude $$\sqrt {{2 \over 5}} $$, then $$\overline z $$ is equal to :
A
$$ - {1 \over 5} + {3 \over 5}i$$
B
$$ - {1 \over 5} - {3 \over 5}i$$
C
$${1 \over 5} - {3 \over 5}i$$
D
$$ - {3 \over 5} - {1 \over 5}i$$
4
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\alpha $$ and $$\beta $$ are the roots of the quadratic equation,
x2 + x sin $$\theta $$ - 2 sin $$\theta $$ = 0, $$\theta \in \left( {0,{\pi \over 2}} \right)$$, then
$${{{\alpha ^{12}} + {\beta ^{12}}} \over {\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right).{{\left( {\alpha - \beta } \right)}^{24}}}}$$ is equal to :
A
$${{{2^{12}}} \over {{{\left( {\sin \theta - 8} \right)}^6}}}$$
B
$${{{2^6}} \over {{{\left( {\sin \theta + 4} \right)}^{12}}}}$$
C
$${{{2^{12}}} \over {{{\left( {\sin \theta + 8} \right)}^{12}}}}$$
D
$${{{2^{12}}} \over {{{\left( {\sin \theta - 4} \right)}^{12}}}}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12