1
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
If the system of linear equations

x + ky + 3z = 0
3x + ky - 2z = 0
2x + 4y - 3z = 0

has a non-zero solution (x, y, z), then $${{xz} \over {{y^2}}}$$ is equal to
A
30
B
-10
C
10
D
-30
2
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\left| {\matrix{ {x - 4} & {2x} & {2x} \cr {2x} & {x - 4} & {2x} \cr {2x} & {2x} & {x - 4} \cr } } \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2}$$

then the ordered pair (A, B) is equal to :
A
(4, 5)
B
(-4, -5)
C
(-4, 3)
D
(-4, 5)
3
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Two sets A and B are as under :

A = {($$a$$, b) $$ \in $$ R $$ \times $$ R : |$$a$$ - 5| < 1 and |b - 5| < 1};

B = {($$a$$, b) $$ \in $$ R $$ \times $$ R : 4($$a$$ - 6)2 + 9(b - 5)2 $$ \le $$ 36 };

Then
A
neither A $$ \subset $$ B nor B $$ \subset $$ A
B
B $$ \subset $$ A
C
A $$ \subset $$ B
D
A $$ \cap $$ B = $$\phi $$ ( an empty set )
4
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $${a_1}$$, $${a_2}$$, $${a_3}$$, ......... ,$${a_{49}}$$ be in A.P. such that

$$\sum\limits_{k = 0}^{12} {{a_{4k + 1}}} = 416$$ and $${a_9} + {a_{43}} = 66$$.

$$a_1^2 + a_2^2 + ....... + a_{17}^2 = 140m$$, then m is equal to
A
33
B
66
C
68
D
34
JEE Main Papers
2023
2021
EXAM MAP