1
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
A straight line through a fixed point (2, 3) intersects the coordinate axes at distinct points P and Q. If O is the origin and the rectangle OPRQ is completed, then the locus of R is :
A
3x + 2y = 6xy
B
3x + 2y = 6
C
2x + 3y = xy
D
3x + 2y = xy
2
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let y = y(x) be the solution of the differential equation

$$\sin x{{dy} \over {dx}} + y\cos x = 4x$$, $$x \in \left( {0,\pi } \right)$$.

If $$y\left( {{\pi \over 2}} \right) = 0$$, then $$y\left( {{\pi \over 6}} \right)$$ is equal to :
A
$$ - {4 \over 9}{\pi ^2}$$
B
$${4 \over {9\sqrt 3 }}{\pi ^2}$$
C
$$ - {8 \over {9\sqrt 3 }}{\pi ^2}$$
D
$$ - {8 \over 9}{\pi ^2}$$
3
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\sin }^2}x} \over {1 + {2^x}}}} dx$$ is
A
$${\pi \over 4}$$
B
$${\pi \over 8}$$
C
$${\pi \over 2}$$
D
$${4\pi }$$
4
JEE Main 2018 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral

$$\int {{{{{\sin }^2}x{{\cos }^2}x} \over {{{\left( {{{\sin }^5}x + {{\cos }^3}x{{\sin }^2}x + {{\sin }^3}x{{\cos }^2}x + {{\cos }^5}x} \right)}^2}}}} dx$$

is equal to
A
$${{ - 1} \over {1 + {{\cot }^3}x}} + C$$
B
$${1 \over {3\left( {1 + {{\tan }^3}x} \right)}} + C$$
C
$${{ - 1} \over {3\left( {1 + {{\tan }^3}x} \right)}} + C$$
D
$${1 \over {1 + {{\cot }^3}x}} + C$$
JEE Main Papers
2023
2021
EXAM MAP