1
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
If the expansion in powers of $$x$$ of the function $${1 \over {\left( {1 - ax} \right)\left( {1 - bx} \right)}}$$ is $${a_0} + {a_1}x + {a_2}{x^2} + {a_3}{x^3}.....$$ then $${a_n}$$ is
A
$${{{b^n} - {a^n}} \over {b - a}}$$
B
$${{{a^n} - {b^n}} \over {b - a}}$$
C
$${{{a^{n + 1}} - {b^{n + 1}}} \over {b - a}}$$
D
$${{{b^{n + 1}} - {a^{n + 1}}} \over {b - a}}$$
2
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
If $${{a_1},{a_2},....{a_n}}$$ are in H.P., then the expression $${{a_1}\,{a_2} + \,{a_2}\,{a_3}\, + .... + {a_{n - 1}}\,{a_n}}$$ is equal to
A
$$n({a_1}\, - {a_n})$$
B
$$(n - 1)({a_1}\, - {a_n})$$
C
$$n{a_1}{a_n}$$
D
$$(n - 1)\,\,{a_1}{a_n}$$
3
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
Let $${a_1}$$, $${a_2}$$, $${a_3}$$.....be terms on A.P. If $${{{a_1} + {a_2} + .....{a_p}} \over {{a_1} + {a_2} + .....{a_q}}} = {{{p^2}} \over {{q^2}}},\,p \ne q,\,then\,{{{a_6}} \over {{a_{21}}}}\,$$ equals
A
$${{41} \over {11}}$$
B
$${7 \over 2}$$
C
$${2 \over 7}$$
D
$${{11} \over {41}}$$
4
AIEEE 2006
MCQ (Single Correct Answer)
+4
-1
A straight line through the point $$A (3, 4)$$ is such that its intercept between the axes is bisected at $$A$$. Its equation is :
A
$$x + y = 7$$
B
$$3x - 4y + 7 = 0$$
C
$$4x + 3y = 24$$
D
$$3x + 4y = 25$$
JEE Main Papers
2023
2021
EXAM MAP