With reference to the observations in photo-electric effect, identify the correct statements from below :
(A) The square of maximum velocity of photoelectrons varies linearly with frequency of incident light.
(B) The value of saturation current increases on moving the source of light away from the metal surface.
(C) The maximum kinetic energy of photo-electrons decreases on decreasing the power of LED (light emitting diode) source of light.
(D) The immediate emission of photo-electrons out of metal surface can not be explained by particle nature of light/electromagnetic waves.
(E) Existence of threshold wavelength can not be explained by wave nature of light/ electromagnetic waves.
Choose the correct answer from the options given below :
A metal exposed to light of wavelength $$800 \mathrm{~nm}$$ and and emits photoelectrons with a certain kinetic energy. The maximum kinetic energy of photo-electron doubles when light of wavelength $$500 \mathrm{~nm}$$ is used. The workfunction of the metal is : (Take hc $$=1230 \,\mathrm{eV}-\mathrm{nm}$$ ).
A source of monochromatic light liberates 9 $$\times$$ 1020 photon per second with wavelength 600 nm when operated at 400 W. The number of photons emitted per second with wavelength of 800 nm by the source of monochromatic light operating at same power will be :
The electric field at a point associated with a light wave is given by
E = 200 [sin (6 $$\times$$ 1015)t + sin (9 $$\times$$ 1015)t] Vm$$-$$1
Given : h = 4.14 $$\times$$ 10$$-$$15 eVs
If this light falls on a metal surface having a work function of 2.50 eV, the maximum kinetic energy of the photoelectrons will be