Two streams of photons, possessing energies equal to five and ten times the work function of metal are incident on the metal surface successively. The ratio of maximum velocities of the photoelectron emitted, in the two cases respectively, will be
The half life period of a radioactive substance is 60 days. The time taken for $$\frac{7}{8}$$th of its original mass to disintegrate will be :
With reference to the observations in photo-electric effect, identify the correct statements from below :
(A) The square of maximum velocity of photoelectrons varies linearly with frequency of incident light.
(B) The value of saturation current increases on moving the source of light away from the metal surface.
(C) The maximum kinetic energy of photo-electrons decreases on decreasing the power of LED (light emitting diode) source of light.
(D) The immediate emission of photo-electrons out of metal surface can not be explained by particle nature of light/electromagnetic waves.
(E) Existence of threshold wavelength can not be explained by wave nature of light/ electromagnetic waves.
Choose the correct answer from the options given below :
A metal exposed to light of wavelength $$800 \mathrm{~nm}$$ and and emits photoelectrons with a certain kinetic energy. The maximum kinetic energy of photo-electron doubles when light of wavelength $$500 \mathrm{~nm}$$ is used. The workfunction of the metal is : (Take hc $$=1230 \,\mathrm{eV}-\mathrm{nm}$$ ).