1
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

An electron of mass ' m ' with an initial velocity $\overrightarrow{\mathrm{v}}=\mathrm{v}_0 \hat{i}\left(\mathrm{v}_0>0\right)$ enters an electric field $\overrightarrow{\mathrm{E}}=-\mathrm{E}_{\mathrm{o}} \hat{\mathrm{k}}$. If the initial de Broglie wavelength is $\lambda_0$, the value after time t would be

A
$\frac{\lambda_o}{\sqrt{1-\frac{\mathrm{e}^2 \mathrm{E}_{\mathrm{o}}^2 \mathrm{t}^2}{\mathrm{~m}^2 \mathrm{v}_{\mathrm{o}}^2}}}$
B
$\lambda_0$
C
$\frac{\lambda_o}{\sqrt{1+\frac{\mathrm{e}^2 \mathrm{E}_{\mathrm{o}}^2 \mathrm{t}^2}{\mathrm{~m}^2 v_o^2}}}$
D
$\lambda_{\mathrm{o}} \sqrt{1+\frac{\mathrm{e}^2 \mathrm{E}_{\mathrm{o}}^2 \mathrm{t}^2}{\mathrm{~m}^2 \mathrm{v}_{\mathrm{o}}^2}}$
2
JEE Main 2025 (Online) 23rd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In photoelectric effect an em-wave is incident on a metal surface and electrons are ejected from the surface. If the work function of the metal is 2.14 eV and stopping potential is 2 V , what is the wavelength of the em-wave? (Given $\mathrm{hc}=1242 \mathrm{eVnm}$ where h is the Planck's constant and c is the speed of light in vaccum.)

A
400 nm
B
600 nm
C
300 nm
D
200 nm
3
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A sub-atomic particle of mass $10^{-30} \mathrm{~kg}$ is moving with a velocity $2.21 \times 10^6 \mathrm{~m} / \mathrm{s}$. Under the matter wave consideration, the particle will behave closely like $\qquad$ $\left(\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)$

A
X-rays
B
Infra-red radiation
C
Gamma rays
D
Visible radiation
4
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A light source of wavelength $\lambda$ illuminates a metal surface and electrons are ejected with maximum kinetic energy of 2 eV . If the same surface is illuminated by a light source of wavelength $\frac{\lambda}{2}$, then the maximum kinetic energy of ejected electrons will be (The work function of metal is 1 eV )

A
5 eV
B
3 eV
C
2 eV
D
6 eV
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12