1
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Which of the following phenomena cannot be explained by wave theory of light?

A

Refraction of light

B

Reflection of light

C

Diffraction of light

D

Compton effect

2
JEE Main 2025 (Online) 28th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

A proton of mass ' $m_P$ ' has same energy as that of a photon of wavelength ' $\lambda$ '. If the proton is moving at non-relativistic speed, then ratio of its de Broglie wavelength to the wavelength of photon is.

A
$\frac{1}{c} \sqrt{\frac{E}{m_p}}$
B
$\frac{1}{\mathrm{c}} \sqrt{\frac{2 \mathrm{E}}{\mathrm{m}_{\mathrm{p}}}}$
C
$\frac{1}{\mathrm{2c}} \sqrt{\frac{ \mathrm{E}}{\mathrm{m}_{\mathrm{p}}}}$
D
$\frac{1}{\mathrm{c}} \sqrt{\frac{\mathrm{E}}{2 \mathrm{~m}_{\mathrm{p}}}}$
3
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

In photoelectric effect, the stopping potential $\left(\mathrm{V}_0\right) \mathrm{v} / \mathrm{s}$ frequency $(v)$ curve is plotted.

( h is the Planck's constant and $\phi_0$ is work function of metal )

(A) $\mathrm{V}_0 \mathrm{v} / \mathrm{s} v$ is linear.

(B) The slope of $\mathrm{V}_0 \mathrm{v} / \mathrm{s} v$ curve $=\frac{\phi_0}{\mathrm{~h}}$

(C) h constant is related to the slope of $\mathrm{V}_0 \mathrm{v} / \mathrm{s} v$ line.

(D) The value of electric charge of electron is not required to determine h using the $\mathrm{V}_0 \mathrm{v} / \mathrm{s} v$ curve.

(E) The work function can be estimated without knowing the value of $h$.

Choose the correct answer from the options given below :

A
(A), (C) and (E) only
B
(C) and (D) only
C
(A), (B) and (C) only
D
(D) and (E) only
4
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

An electron of mass ' m ' with an initial velocity $\overrightarrow{\mathrm{v}}=\mathrm{v}_0 \hat{i}\left(\mathrm{v}_0>0\right)$ enters an electric field $\overrightarrow{\mathrm{E}}=-\mathrm{E}_{\mathrm{o}} \hat{\mathrm{k}}$. If the initial de Broglie wavelength is $\lambda_0$, the value after time t would be

A
$\frac{\lambda_o}{\sqrt{1-\frac{\mathrm{e}^2 \mathrm{E}_{\mathrm{o}}^2 \mathrm{t}^2}{\mathrm{~m}^2 \mathrm{v}_{\mathrm{o}}^2}}}$
B
$\lambda_0$
C
$\frac{\lambda_o}{\sqrt{1+\frac{\mathrm{e}^2 \mathrm{E}_{\mathrm{o}}^2 \mathrm{t}^2}{\mathrm{~m}^2 v_o^2}}}$
D
$\lambda_{\mathrm{o}} \sqrt{1+\frac{\mathrm{e}^2 \mathrm{E}_{\mathrm{o}}^2 \mathrm{t}^2}{\mathrm{~m}^2 \mathrm{v}_{\mathrm{o}}^2}}$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12