Consider the following radioactive decay process
$$_{84}^{218}A\buildrel \alpha \over \longrightarrow {A_1}\buildrel {{\beta ^ - }} \over \longrightarrow {A_2}\buildrel \gamma \over \longrightarrow {A_3}\buildrel \alpha \over \longrightarrow {A_4}\buildrel {{\beta ^ + }} \over \longrightarrow {A_5}\buildrel \gamma \over \longrightarrow {A_6}$$
The mass number and the atomic number of A$$_6$$ are given by :
An $$\alpha$$ particle and a proton are accelerated from rest through the same potential difference. The ratio of linear momenta acquired by above two particles will be:
Read the following statements :
(A) Volume of the nucleus is directly proportional to the mass number.
(B) Volume of the nucleus is independent of mass number.
(C) Density of the nucleus is directly proportional to the mass number.
(D) Density of the nucleus is directly proportional to the cube root of the mass number.
(E) Density of the nucleus is independent of the mass number.
Choose the correct option from the following options.