The kinetic energy of an electron, $$\alpha$$-particle and a proton are given as $$4 \mathrm{~K}, 2 \mathrm{~K}$$ and $$\mathrm{K}$$ respectively. The de-Broglie wavelength associated with electron $$(\lambda \mathrm{e}), \alpha$$-particle $$((\lambda \alpha)$$ and the proton $$(\lambda p)$$ are as follows:
The threshold frequency of a metal is $$f_{0}$$. When the light of frequency $$2 f_{0}$$ is incident on the metal plate, the maximum velocity of photoelectrons is $$v_{1}$$. When the frequency of incident radiation is increased to $$5 \mathrm{f}_{0}$$, the maximum velocity of photoelectrons emitted is $$v_{2}$$. The ratio of $$v_{1}$$ to $$v_{2}$$ is :
A proton moving with one tenth of velocity of light has a certain de Broglie wavelength of $$\lambda$$. An alpha particle having certain kinetic energy has the same de-Brogle wavelength $$\lambda$$. The ratio of kinetic energy of proton and that of alpha particle is: