A metallic surface is illuminated with radiation of wavelength $$\lambda$$, the stopping potential is $$V_{0}$$. If the same surface is illuminated with radiation of wavelength $$2 \lambda$$. the stopping potential becomes $$\frac{V_{o}}{4}$$. The threshold wavelength for this metallic surface will be
The variation of stopping potential $$\left(\mathrm{V}_{0}\right)$$ as a function of the frequency $$(v)$$ of the incident light for a metal is shown in figure. The work function of the surface is
The de Broglie wavelength of a molecule in a gas at room temperature (300 K) is $$\lambda_1$$. If the temperature of the gas is increased to 600 K, then the de Broglie wavelength of the same gas molecule becomes
In photo electric effect
A. The photocurrent is proportional to the intensity of the incident radiation
B. Maximum Kinetic energy with which photoelectrons are emitted depends on the intensity of incident light.
C. Max. K.E with which photoelectrons are emitted depends on the frequency of incident light.
D. The emission of photoelectrons require a minimum threshold intensity of incident radiation.
E. Max. K.E of the photoelectrons is independent of the frequency of the incident light.
Choose the correct answer from the options given below: