1
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

The equilibrium constant for the reaction

$$\mathrm{SO}_3(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g})$$

is $$\mathrm{K}_{\mathrm{c}}=4.9 \times 10^{-2}$$. The value of $$\mathrm{K}_{\mathrm{c}}$$ for the reaction given below is $$2 \mathrm{SO}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_3(\mathrm{~g})$$ is :

A
49
B
416
C
41.6
D
4.9
2
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\mathrm{A}_{(\mathrm{g})} \rightleftharpoons \mathrm{B}_{(\mathrm{g})}+\frac{\mathrm{C}}{2}(\mathrm{g})$$ The correct relationship between $$\mathrm{K}_{\mathrm{P}}, \alpha$$ and equilibrium pressure $$\mathrm{P}$$ is

A
$$K_P=\frac{\alpha^{1 / 2} P^{3 / 2}}{(2+\alpha)^{3 / 2}}$$
B
$$K_P=\frac{\alpha^{3 / 2} P^{1 / 2}}{(2+\alpha)^{1 / 2}(1-\alpha)}$$
C
$$K_P=\frac{\alpha^{1 / 2} P^{1 / 2}}{(2+\alpha)^{3 / 2}}$$
D
$$K_P=\frac{\alpha^{1 / 2} P^{1 / 2}}{(2+\alpha)^{1 / 2}}$$
3
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For the given reaction, choose the correct expression of $$\mathrm{K}_{\mathrm{C}}$$ from the following :-

$$\mathrm{Fe}_{(\mathrm{aq})}^{3+}+\mathrm{SCN}_{(\mathrm{aq})}^{-} \rightleftharpoons(\mathrm{FeSCN})_{(\mathrm{aq})}^{2+}$$

A
$$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}{\left[\mathrm{FeSCN}^{2+}\right]}$$
B
$$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}$$
C
$$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]^2}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}$$
D
$$\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]^2\left[\mathrm{SCN}^{-}\right]^2}$$
4
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For a concentrated solution of a weak electrolyte ($$\mathrm{K}_{\text {eq }}=$$ equilibrium constant) $$\mathrm{A}_{2} \mathrm{B}_{3}$$ of concentration '$$c$$', the degree of dissociation '$$\alpha$$' is :

A
$$\left(\frac{K_{e q}}{25 c^{2}}\right)^{\frac{1}{5}}$$
B
$$\left(\frac{K_{e q}}{108 c^{4}}\right)^{\frac{1}{5}}$$
C
$$\left(\frac{K_{e q}}{5 c^{4}}\right)^{\frac{1}{5}}$$
D
$$\left(\frac{K_{e q}}{6 c^{5}}\right)^{\frac{1}{5}}$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12