The equilibrium constant for the reaction
$$\mathrm{SO}_3(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g})$$
is $$\mathrm{K}_{\mathrm{c}}=4.9 \times 10^{-2}$$. The value of $$\mathrm{K}_{\mathrm{c}}$$ for the reaction given below is $$2 \mathrm{SO}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_3(\mathrm{~g})$$ is :
$$\mathrm{A}_{(\mathrm{g})} \rightleftharpoons \mathrm{B}_{(\mathrm{g})}+\frac{\mathrm{C}}{2}(\mathrm{g})$$ The correct relationship between $$\mathrm{K}_{\mathrm{P}}, \alpha$$ and equilibrium pressure $$\mathrm{P}$$ is
For the given reaction, choose the correct expression of $$\mathrm{K}_{\mathrm{C}}$$ from the following :-
$$\mathrm{Fe}_{(\mathrm{aq})}^{3+}+\mathrm{SCN}_{(\mathrm{aq})}^{-} \rightleftharpoons(\mathrm{FeSCN})_{(\mathrm{aq})}^{2+}$$
For a concentrated solution of a weak electrolyte ($$\mathrm{K}_{\text {eq }}=$$ equilibrium constant) $$\mathrm{A}_{2} \mathrm{B}_{3}$$ of concentration '$$c$$', the degree of dissociation '$$\alpha$$' is :