A vessel at 1000 K contains $\mathrm{CO}_2$ with a pressure of 0.5 atm . Some of $\mathrm{CO}_2$ is converted into CO on addition of graphite. If total pressure at equilibrium is 0.8 atm , then Kp is :
For the given hypothetical reactions, the equilibrium constants are as follows :
$$\begin{aligned} & \mathrm{X} \rightleftharpoons \mathrm{Y} ; \mathrm{K}_1=1.0 \\ & \mathrm{Y} \rightleftharpoons \mathrm{Z} ; \mathrm{K}_2=2.0 \\ & \mathrm{Z} \rightleftharpoons \mathrm{W} ; \mathrm{K}_3=4.0 \end{aligned}$$
The equilibrium constant for the reaction $$\mathrm{X} \rightleftharpoons \mathrm{W}$$ is
The ratio $$\frac{K_P}{K_C}$$ for the reaction :
$$\mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}$$ is :
At $$-20^{\circ} \mathrm{C}$$ and $$1 \mathrm{~atm}$$ pressure, a cylinder is filled with equal number of $$\mathrm{H}_2, \mathrm{I}_2$$ and $$\mathrm{HI}$$ molecules for the reaction $$\mathrm{H}_2(\mathrm{~g})+\mathrm{I}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$$, the $$\mathrm{K}_{\mathrm{p}}$$ for the process is $$x \times 10^{-1}$$.
$$\mathrm{x}=$$ __________.
[Given : $$\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$$]