1
JEE Main 2024 (Online) 5th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Given below are two statements :

Statement I : On passing $$\mathrm{HCl}_{(\mathrm{g})}$$ through a saturated solution of $$\mathrm{BaCl}_2$$, at room temperature white turbidity appears.

Statement II : When $$\mathrm{HCl}$$ gas is passed through a saturated solution of $$\mathrm{NaCl}$$, sodium chloride is precipitated due to common ion effect.

In the light of the above statements, choose the most appropriate answer from the options given below :

A
Both Statement I and Statement II are correct
B
Statement I is incorrect but Statement II is correct
C
Both Statement I and Statement II are incorrect
D
Statement I is correct but Statement II is incorrect
2
JEE Main 2024 (Online) 5th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The following reaction occurs in the Blast furnance where iron ore is reduced to iron metal

$$\mathrm{Fe}_2 \mathrm{O}_{3(s)}+3 \mathrm{CO}_{(g)} \rightleftharpoons \mathrm{Fe}_{(j)}+3 \mathrm{CO}_{2(g)}$$

Using the Le-chatelier's principle, predict which one of the following will not disturb the equilibrium.

A
Addition of $$\mathrm{CO}_2$$
B
Removal of $$\mathrm{CO}$$
C
Addition of $$\mathrm{Fe}_2 \mathrm{O}_3$$
D
Removal of $$\mathrm{CO}_2$$
3
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The equilibrium constant for the reaction

$$\mathrm{SO}_3(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_2(\mathrm{~g})+\frac{1}{2} \mathrm{O}_2(\mathrm{~g})$$

is $$\mathrm{K}_{\mathrm{c}}=4.9 \times 10^{-2}$$. The value of $$\mathrm{K}_{\mathrm{c}}$$ for the reaction given below is $$2 \mathrm{SO}_2(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_3(\mathrm{~g})$$ is :

A
49
B
416
C
41.6
D
4.9
4
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\mathrm{A}_{(\mathrm{g})} \rightleftharpoons \mathrm{B}_{(\mathrm{g})}+\frac{\mathrm{C}}{2}(\mathrm{g})$$ The correct relationship between $$\mathrm{K}_{\mathrm{P}}, \alpha$$ and equilibrium pressure $$\mathrm{P}$$ is

A
$$K_P=\frac{\alpha^{1 / 2} P^{3 / 2}}{(2+\alpha)^{3 / 2}}$$
B
$$K_P=\frac{\alpha^{3 / 2} P^{1 / 2}}{(2+\alpha)^{1 / 2}(1-\alpha)}$$
C
$$K_P=\frac{\alpha^{1 / 2} P^{1 / 2}}{(2+\alpha)^{3 / 2}}$$
D
$$K_P=\frac{\alpha^{1 / 2} P^{1 / 2}}{(2+\alpha)^{1 / 2}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12