Let $$\mathrm{a}, \mathrm{b}$$ and $$\mathrm{c}$$ denote the outcome of three independent rolls of a fair tetrahedral die, whose four faces are marked $$1,2,3,4$$. If the probability that $$a x^2+b x+c=0$$ has all real roots is $$\frac{m}{n}, \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$, then $$\mathrm{m}+\mathrm{n}$$ is equal to _________.
Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables $$X$$ and $$Y$$ respectively denote the number of blue and yellow balls. If $$\bar{X}$$ and $$\bar{Y}$$ are the means of $$X$$ and $$Y$$ respectively, then $$7 \bar{X}+4 \bar{Y}$$ is equal to ___________.
From a lot of 12 items containing 3 defectives, a sample of 5 items is drawn at random. Let the random variable $$X$$ denote the number of defective items in the sample. Let items in the sample be drawn one by one without replacement. If variance of $$X$$ is $$\frac{m}{n}$$, where $$\operatorname{gcd}(m, n)=1$$, then $$n-m$$ is equal to _________.
From a lot of 10 items, which include 3 defective items, a sample of 5 items is drawn at random. Let the random variable $$X$$ denote the number of defective items in the sample. If the variance of $$X$$ is $$\sigma^2$$, then $$96 \sigma^2$$ is equal to __________.