1
JEE Main 2023 (Online) 29th January Morning Shift
Numerical
+4
-1
Change Language

Let $$f:\mathbb{R}\to\mathbb{R}$$ be a differentiable function that satisfies the relation $$f(x+y)=f(x)+f(y)-1,\forall x,y\in\mathbb{R}$$. If $$f'(0)=2$$, then $$|f(-2)|$$ is equal to ___________.

Your input ____
2
JEE Main 2022 (Online) 27th July Evening Shift
Numerical
+4
-1
Change Language

For the curve $$C:\left(x^{2}+y^{2}-3\right)+\left(x^{2}-y^{2}-1\right)^{5}=0$$, the value of $$3 y^{\prime}-y^{3} y^{\prime \prime}$$, at the point $$(\alpha, \alpha)$$, $$\alpha>0$$, on C, is equal to ____________.

Your input ____
3
JEE Main 2022 (Online) 29th June Evening Shift
Numerical
+4
-1
Change Language

Let f and g be twice differentiable even functions on ($$-$$2, 2) such that $$f\left( {{1 \over 4}} \right) = 0$$, $$f\left( {{1 \over 2}} \right) = 0$$, $$f(1) = 1$$ and $$g\left( {{3 \over 4}} \right) = 0$$, $$g(1) = 2$$. Then, the minimum number of solutions of $$f(x)g''(x) + f'(x)g'(x) = 0$$ in $$( - 2,2)$$ is equal to ________.

Your input ____
4
JEE Main 2022 (Online) 27th June Evening Shift
Numerical
+4
-1
Change Language

If $$y(x) = {\left( {{x^x}} \right)^x},\,x > 0$$, then $${{{d^2}x} \over {d{y^2}}} + 20$$ at x = 1 is equal to ____________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12