For $$x \in(-1,1]$$, the number of solutions of the equation $$\sin ^{-1} x=2 \tan ^{-1} x$$ is equal to __________.
If $$S=\left\{x \in \mathbb{R}: \sin ^{-1}\left(\frac{x+1}{\sqrt{x^{2}+2 x+2}}\right)-\sin ^{-1}\left(\frac{x}{\sqrt{x^{2}+1}}\right)=\frac{\pi}{4}\right\}$$, then $$\sum_\limits{x \in s}\left(\sin \left(\left(x^{2}+x+5\right) \frac{\pi}{2}\right)-\cos \left(\left(x^{2}+x+5\right) \pi\right)\right)$$ is equal to ____________.
If the domain of the function $$f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$$ is $$[\alpha, \beta) \mathrm{U}(\gamma, \delta]$$, then $$|3 \alpha+10(\beta+\gamma)+21 \delta|$$ is equal to _________.
If the sum of all the solutions of $${\tan ^{ - 1}}\left( {{{2x} \over {1 - {x^2}}}} \right) + {\cot ^{ - 1}}\left( {{{1 - {x^2}} \over {2x}}} \right) = {\pi \over 3}, - 1 < x < 1,x \ne 0$$, is $$\alpha - {4 \over {\sqrt 3 }}$$, then $$\alpha$$ is equal to _____________.