NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
Let S be the sum of all solutions (in radians) of the equation $${\sin ^4}\theta + {\cos ^4}\theta - \sin \theta \cos \theta = 0$$ in [0, 4$$\pi$$]. Then $${{8S} \over \pi }$$ is equal to ____________.
Your Input ________

Answer

Correct Answer is 56

Explanation

Given equation

$${\sin ^4}\theta + {\cos ^4}\theta - \sin \theta \cos \theta = 0$$

$$ \Rightarrow 1 - {\sin ^2}\theta {\cos ^2}\theta - \sin \theta \cos \theta = 0$$

$$ \Rightarrow 2 - {(\sin 2\theta )^2} - \sin 2\theta = 0$$

$$ \Rightarrow {(\sin 2\theta )^2} + (\sin 2\theta ) - 2 = 0$$

$$ \Rightarrow (\sin 2\theta + 2)(\sin 2\theta - 1) = 0$$

$$ \Rightarrow \sin 2\theta = 1$$ or $$\sin 2\theta = - 2$$ (Not Possible)

$$ \Rightarrow 2\theta = {\pi \over 2},{{5\pi } \over 2},{{9\pi } \over 2},{{13\pi } \over 2}$$

$$ \Rightarrow \theta = {\pi \over 4},{{5\pi } \over 4},{{9\pi } \over 4},{{13\pi } \over 4}$$

$$ \Rightarrow S = {\pi \over 4} + {{5\pi } \over 4} + {{9\pi } \over 4} + {{13\pi } \over 4} = 7\pi $$

$$ \Rightarrow {{8S} \over \pi } = {{8 \times 7\pi } \over \pi } = 56.00$$
2

JEE Main 2021 (Online) 18th March Morning Shift

Numerical
The number of solutions of the equation

$$|\cot x| = \cot x + {1 \over {\sin x}}$$ in the interval [ 0, 2$$\pi$$ ] is
Your Input ________

Answer

Correct Answer is 1

Explanation

Case I : When cot x > 0, $$x \in \left[ {0,{\pi \over 2}} \right] \cup \left[ {\pi ,{{3\pi } \over 2}} \right]$$

$$\cot x = \cot x + {1 \over {\sin x}} \Rightarrow $$ not possible

Case II : When cot x < 0, $$x \in \left[ {{\pi \over 2},\pi } \right] \cup \left[ {{{3\pi } \over 2},2\pi } \right]$$

$$ - \cot x = \cot x + {1 \over {\sin x}}$$

$$ \Rightarrow {{ - 2\cos x} \over {\sin x}} = {1 \over {\sin x}}$$

$$ \Rightarrow \cos x = {{ - 1} \over 2}$$

$$ \Rightarrow x = {{2\pi } \over 3},{{4\pi } \over 3}$$(Rejected)

One solution.
3

JEE Main 2021 (Online) 26th February Morning Shift

Numerical
The number of integral values of 'k' for which the equation $$3\sin x + 4\cos x = k + 1$$ has a solution, k$$\in$$R is ___________.
Your Input ________

Answer

Correct Answer is 11

Explanation

We know,

$$ - \sqrt {{a^2} + {b^2}} \le a\cos x + b\sin x \le \sqrt {{a^2} + {b^2}} $$

$$ \therefore $$ $$ - \sqrt {{3^2} + {4^2}} \le 3\cos x + 4\sin x \le \sqrt {{3^2} + {4^2}} $$

$$ - 5 \le k + 1 \le 5$$

$$ - 6 \le k \le 4$$

$$ \therefore $$ Set of integers = $$ - 6, - 5, - 4, - 3, - 2, - 1,0,1,2,3,4$$ = Total 11 intergers.
4

JEE Main 2021 (Online) 26th February Morning Shift

Numerical
If $$\sqrt 3 ({\cos ^2}x) = (\sqrt 3 - 1)\cos x + 1$$, the number of solutions of the given equation when $$x \in \left[ {0,{\pi \over 2}} \right]$$ is __________.
Your Input ________

Answer

Correct Answer is 1

Explanation

$$\sqrt 3 ({\cos ^2}x) = (\sqrt 3 - 1)\cos x + 1$$

$$ \Rightarrow $$ $$\sqrt 3 {\cos ^2}x - \sqrt 3 \cos x + \cos x - 1 = 0$$

$$ \Rightarrow \sqrt 3 \cos x(\cos x - 1) + (\cos x - 1) = 0$$

$$ \Rightarrow (\cos x - 1)(\sqrt 3 \cos x + 1) = 0$$

$$\cos x = 1$$

$$ \Rightarrow x = 0$$ $$ [as x \in \left[ {0,{\pi \over 2}} \right]$$]

and $$\cos x = - {1 \over {\sqrt 3 }}$$ (not possible in $$x \in \left[ {0,{\pi \over 2}} \right]$$]

$$ \therefore $$ Number of solution = 1

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12