NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
Let S = {1, 2, 3, 4, 5, 6, 9}. Then the number of elements in the set T = {A $$ \subseteq $$ S : A $$\ne$$ $$\phi$$ and the sum of all the elements of A is not a multiple of 3} is _______________.
Your Input ________

Answer

Correct Answer is 80

Explanation

3n type $$\to$$ 3, 6, 9 = P

3n $$-$$ 1 type $$\to$$ 2, 5 = Q

3n $$-$$ 2 type $$\to$$ 1, 4 = R

number of subset of S containing one element which are not divisible by 3 = $${}^2$$C1 + $${}^2$$C1 = 4

number of subset of S containing two numbers whose some is not divisible by 3

= $${}^3$$C1 $$\times$$ $${}^2$$C1 + $${}^3$$C1 $$\times$$ $${}^2$$C1 + $${}^2$$C2 + $${}^2$$C2 = 14

number of subsets containing 3 elements whose sum is not divisible by 3

= $${}^3$$C2 $$\times$$ $${}^4$$C1 + ($${}^2$$C2 $$\times$$ $${}^2$$C1)2 + $${}^3$$C1($${}^2$$C2 + $${}^2$$C2) = 22

number of subsets containing 4 elements whose sum is not divisible by 3

= $${}^3$$C3 $$\times$$ $${}^4$$C1 + $${}^3$$C2($${}^2$$C2 + $${}^2$$C2) + ($${}^3$$C1$${}^2$$C1 $$\times$$ $${}^2$$C2)2

= 4 + 6 + 12 = 22

number of subsets of S containing 5 elements whose sum is not divisible by 3.

= $${}^3$$C3($${}^2$$C2 + $${}^2$$C2) + ($${}^3$$C2$${}^2$$C1 $$\times$$ $${}^2$$C2) $$\times$$ 2 = 2 + 12 = 14

number of subsets of S containing 6 elements whose sum is not divisible by 3 = 4

$$\Rightarrow$$ Total subsets of Set A whose sum of digits is not divisible by 3 = 4 + 14 + 22 + 22 + 14 + 4 = 80.
2

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
Let z1 and z2 be two complex numbers such that $$\arg ({z_1} - {z_2}) = {\pi \over 4}$$ and z1, z2 satisfy the equation | z $$-$$ 3 | = Re(z). Then the imaginary part of z1 + z2 is equal to ___________.
Your Input ________

Answer

Correct Answer is 6

Explanation

Let z1 = x1 + iy ; z2 = x2 + iy2

z1 $$-$$ z2 = (x1 $$-$$ x2) + i(y1 $$-$$ y2)

$$\therefore$$ $$\arg ({z_1} - {z_2}) = {\pi \over 4}$$ $$\Rightarrow$$ $${\tan ^{ - 1}}\left( {{{{y_1} - {y_2}} \over {{x_1} - {x_2}}}} \right) = {\pi \over 4}$$

$${y_1} - {y_2} = {x_1} - {x_2}$$ ....... (1)

$$|{z_1} - 3|\, = {\mathop{\rm Re}\nolimits} ({z_1}) \Rightarrow {({x_1} - 3)^2} + {y_1}^2 = {x_1}^2$$ .... (2)

$$|{z_2} - 3|\, = {\mathop{\rm Re}\nolimits} ({z_2}) \Rightarrow {({x_2} - 3)^2} + {y_2}^2 = {x_2}^2$$ .... (3)

sub (2) & (3)

$${({x_1} - 3)^2} - {({x_2} - 3)^2} + {y_1}^2 - {y_2}^2 = {x_1}^2 - {x_2}^2$$

$$({x_1} - {x_2})({x_1} + {x_2} - 6) + ({y_1} - {y_2})({y_1} + {y_2})$$

$$ = ({x_1} - {x_2})({x_1} + {x_2})$$

$${x_1} + {x_2} - 6 + {y_1} + {y_2} = {x_1} + {x_2} \Rightarrow {y_1} + {y_2} = 6$$
3

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
The probability distribution of random variable X is given by :

X 1 2 3 4 5
P(X) K 2K 2K 3K K


Let p = P(1 < X < 4 | X < 3). If 5p = $$\lambda$$K, then $$\lambda$$ equal to ___________.
Your Input ________

Answer

Correct Answer is 30

Explanation

$$\sum {P(X) = 1 \Rightarrow k + 2k + 3} k + k = 1$$

$$ \Rightarrow k = {1 \over 9}$$

Now, $$p = P\left( {{{kx < 4} \over {X < 3}}} \right) = {{P(X = 2)} \over {P(X < 3)}} = {{{{2k} \over {9k}}} \over {{k \over {9k}} + {{2k} \over {9k}}}} = {2 \over 3}$$

$$ \Rightarrow p = {2 \over 3}$$

Now, $$5p = \lambda k$$

$$ \Rightarrow (5)\left( {{2 \over 3}} \right) = \lambda (1/9)$$

$$ \Rightarrow \lambda = 30$$
4

JEE Main 2021 (Online) 27th August Evening Shift

Numerical
Let S be the sum of all solutions (in radians) of the equation $${\sin ^4}\theta + {\cos ^4}\theta - \sin \theta \cos \theta = 0$$ in [0, 4$$\pi$$]. Then $${{8S} \over \pi }$$ is equal to ____________.
Your Input ________

Answer

Correct Answer is 56

Explanation

Given equation

$${\sin ^4}\theta + {\cos ^4}\theta - \sin \theta \cos \theta = 0$$

$$ \Rightarrow 1 - {\sin ^2}\theta {\cos ^2}\theta - \sin \theta \cos \theta = 0$$

$$ \Rightarrow 2 - {(\sin 2\theta )^2} - \sin 2\theta = 0$$

$$ \Rightarrow {(\sin 2\theta )^2} + (\sin 2\theta ) - 2 = 0$$

$$ \Rightarrow (\sin 2\theta + 2)(\sin 2\theta - 1) = 0$$

$$ \Rightarrow \sin 2\theta = 1$$ or $$\sin 2\theta = - 2$$ (Not Possible)

$$ \Rightarrow 2\theta = {\pi \over 2},{{5\pi } \over 2},{{9\pi } \over 2},{{13\pi } \over 2}$$

$$ \Rightarrow \theta = {\pi \over 4},{{5\pi } \over 4},{{9\pi } \over 4},{{13\pi } \over 4}$$

$$ \Rightarrow S = {\pi \over 4} + {{5\pi } \over 4} + {{9\pi } \over 4} + {{13\pi } \over 4} = 7\pi $$

$$ \Rightarrow {{8S} \over \pi } = {{8 \times 7\pi } \over \pi } = 56.00$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12