If $${S_n} = \sum\limits_{r = 0}^n {{1 \over {{}^n{C_r}}}} \,\,and\,\,{t_n} = \sum\limits_{r = 0}^n {{r \over {{}^n{C_r}}},\,} $$then $${{{t_{ n}}} \over {{S_n}}}$$ is equal to
CHECK ANSWER
Explanation $${S_n} = \sum\limits_{r = 0}^n {{1 \over {{}^n{C_r}}}}$$
=$${1 \over {{}^n{C_0}}} + {1 \over {{}^n{C_1}}} + .... + {1 \over {{}^n{C_n}}}$$
$${t_n} = \sum\limits_{r = 0}^n {{r \over {{}^n{C_r}}}}$$
= $${0 \over {{}^n{C_0}}} + {1 \over {{}^n{C_1}}} + {2 \over {{}^n{C_2}}}.... + {n \over {{}^n{C_n}}}$$.........(1)
We can write $${t_n}$$ by rearranging like this,
$${t_n}$$ = $${n \over {{}^n{C_n}}} + {{n - 1} \over {{}^n{C_{n - 1}}}} + ... + {1 \over {{}^n{C_1}}} + {0 \over {{}^n{C_0}}}$$
= $${n \over {{}^n{C_0}}} + {{n - 1} \over {{}^n{C_1}}} + ... + {1 \over {{}^n{C_{n - 1}}}} + {0 \over {{}^n{C_n}}}$$.........(2)
[as $${{}^n{C_0}}$$ = $${{}^n{C_n}}$$, $${{}^n{C_1}}$$ = $${{}^n{C_{n - 1}}}$$......]
By adding (1) and (2) we get,
$$2{t_n}$$ = $${n \over {{}^n{C_0}}} + {n \over {{}^n{C_1}}} + ... + {n \over {{}^n{C_{n - 1}}}} + {n \over {{}^n{C_n}}}$$
= $$n\left[ {{1 \over {{}^n{C_0}}} + {1 \over {{}^n{C_1}}} + ... + {1 \over {{}^n{C_{n - 1}}}} + {1 \over {{}^n{C_n}}}} \right]$$
= n$${S_n}$$
$$\therefore$$ $${{{t_n}} \over {{S_n}}} = {n \over 2}$$