1
AIEEE 2005
+4
-1
If $$A = \left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]$$ and $$I = \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right],$$ then which one of the following holds for all $$n \ge 1,$$ by the principle of mathematical induction
A
$${A^n} = nA - \left( {n - 1} \right){\rm I}$$
B
$${A^n} = {2^{n - 1}}A - \left( {n - 1} \right){\rm I}$$
C
$${A^n} = nA + \left( {n - 1} \right){\rm I}$$
D
$${A^n} = {2^{n - 1}}A + \left( {n - 1} \right){\rm I}$$
2
AIEEE 2005
+4
-1
If the coefficient of $${x^7}$$ in $${\left[ {a{x^2} + \left( {{1 \over {bx}}} \right)} \right]^{11}}$$ equals the coefficient of $${x^{ - 7}}$$ in $${\left[ {ax - \left( {{1 \over {b{x^2}}}} \right)} \right]^{11}}$$, then $$a$$ and $$b$$ satisfy the relation
A
$$a - b = 1$$
B
$$a + b = 1$$
C
$${a \over b} = 1$$
D
$$ab = 1$$
3
AIEEE 2005
+4
-1
If $$x$$ is so small that $${x^3}$$ and higher powers of $$x$$ may be neglected, then $${{{{\left( {1 + x} \right)}^{{3 \over 2}}} - {{\left( {1 + {1 \over 2}x} \right)}^3}} \over {{{\left( {1 - x} \right)}^{{1 \over 2}}}}}$$ may be approximated as
A
$$1 - {3 \over 8}{x^2}$$
B
$$3x + {3 \over 8}{x^2}$$
C
$$- {3 \over 8}{x^2}$$
D
$${x \over 2} - {3 \over 8}{x^2}$$
4
AIEEE 2005
+4
-1
If the coefficients of rth, (r+1)th, and (r + 2)th terms in the binomial expansion of $${{\rm{(1 + y )}}^m}$$ are in A.P., then m and r satisfy the equation
A
$${m^2} - m(4r - 1) + 4\,{r^2} - 2 = 0$$
B
$${m^2} - m(4r + 1) + 4\,{r^2} + 2 = 0$$
C
$${m^2} - m(4r + 1) + 4\,{r^2} - 2 = 0$$
D
$${m^2} - m(4r - 1) + 4\,{r^2} + 2 = 0$$
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination