### JEE Mains Previous Years Questions with Solutions

4.5
star star star star star
1

### AIEEE 2004

A particle at the end of a spring executes $S.H.M$ with a period ${t_1}$. While the corresponding period for another spring is ${t_2}$. If the period of oscillation with the two springs in series is $T$ then
A
${T^{ - 1}} = t_1^{ - 1} + t_2^{ - 1}$
B
${T^2} = t_1^2 + t_2^2$
C
$T = {t_1} + {t_2}$
D
${T^{ - 2}} = t_1^{ - 2} + t_2^{ - 2}$

## Explanation

For first spring, ${t_1} = 2\pi \sqrt {{m \over {{k_1}}}} ,$

For second spring, ${t_2} = 2\pi \sqrt {{m \over {{k_2}}}}$

when springs are in series then, ${k_{eff}} = {{{k_1}{k_2}} \over {{k_1} + {k_2}}}$

$\therefore$ $T = 2\pi \sqrt {{{m\left( {{k_1} + {k_2}} \right)} \over {{k_1}{k_2}}}}$

$\therefore$ $T = 2\pi \sqrt {{m \over {{k_2}}} + {m \over {{k_1}}}}$

$= 2\pi \sqrt {{{t_2^2} \over {{{\left( {2\pi } \right)}^2}}} + {{t_1^2} \over {{{\left( {2\pi } \right)}^2}}}}$

$\Rightarrow {T^2} = t_1^2 + t_2^2$
2

### AIEEE 2004

The total energy of particle, executing simple harmonic motion is
A
independent of $x$
B
$\propto \,{x^2}$
C
$\propto \,x$
D
$\propto \,{x^{1/2}}$

## Explanation

At any instant the total energy is

${1 \over 2}k{A^2} = \,\,$ constant, where $A=$ amplitude

hence total energy is independent of $x.$
3

### AIEEE 2004

The bob of a simple pendulum executes simple harmonic motion in water with a period $t,$ while the period of oscillation of the bob is ${t_0}$ in air. Neglecting frictional force of water and given that the density of the bob is $\left( {4/3} \right) \times 1000\,\,kg/{m^3}.$ What relationship between $t$ and ${t_0}$ is true
A
$t = 2{t_0}$
B
$t = {t_0}/2$
C
$t = {t_0}$
D
$t = 4{t_0}$

## Explanation

$t = 2\pi \sqrt {{\ell \over {{g_{eff}}}}} ;\,{t_o}\,\, = 2\pi \sqrt {{\ell \over g}}$

$m{g_{eff}} = mg - B = my - V \times 100 \times g$

$\therefore$ ${g_{eff}} = g - {{100} \over {\left( {m/v} \right)}}g$

$= g - {{1000} \over {{4 \over 3} \times 1000}}g = {g \over 4}$

$\therefore$ $t = 2\pi \sqrt {{\ell \over {g/4}}} \,\,\,\,\,\,\,\,\,\,\,t = 2{t_0}$
4

### AIEEE 2003

The displacement of particle varies according to the relation
$x=4$$\left( {\cos \,\pi t + \sin \,\pi t} \right).$ The amplitude of the particle is
A
$-4$
B
$4$
C
$4\sqrt 2$
D
$8$

## Explanation

$x = 4\left( {\cos \pi t + \sin \pi t} \right)$

$= \sqrt 2 \times 4\left( {{{\sin \pi t} \over {\sqrt 2 }} + {{\cos \pi t} \over {\sqrt 2 }}} \right)$

$x = 4\sqrt 2 \sin \left( {\pi t + {{45}^ \circ }} \right)$