When a particle executes Simple Hormonic Motion, the nature of graph of velocity as a function of displacement will be :
In figure $$(\mathrm{A})$$, mass '$$2 \mathrm{~m}^{\text {' }}$$ is fixed on mass '$$\mathrm{m}$$ ' which is attached to two springs of spring constant $$\mathrm{k}$$. In figure (B), mass '$$\mathrm{m}$$' is attached to two springs of spring constant '$$\mathrm{k}$$' and '$$2 \mathrm{k}^{\prime}$$. If mass '$$\mathrm{m}$$' in (A) and in (B) are displaced by distance '$$x^{\prime}$$ horizontally and then released, then time period $$\mathrm{T}_{1}$$ and $$\mathrm{T}_{2}$$ corresponding to $$(\mathrm{A})$$ and (B) respectively follow the relation.
The motion of a simple pendulum executing S.H.M. is represented by the following equation.
$$y = A\sin (\pi t + \phi )$$, where time is measured in second. The length of pendulum is
Motion of a particle in x-y plane is described by a set of following equations $$x = 4\sin \left( {{\pi \over 2} - \omega t} \right)\,m$$ and $$y = 4\sin (\omega t)\,m$$. The path of the particle will be :