A particle executes simple harmonic motion between $$x=-A$$ and $$x=+A$$. If time taken by particle to go from $$x=0$$ to $$\frac{A}{2}$$ is 2 s; then time taken by particle in going from $$x=\frac{A}{2}$$ to A is
The time period of oscillation of a simple pendulum of length L suspended from the roof of a vehicle, which moves without friction down an inclined plane of inclination $$\alpha$$, is given by :
When a particle executes Simple Hormonic Motion, the nature of graph of velocity as a function of displacement will be :
In figure $$(\mathrm{A})$$, mass '$$2 \mathrm{~m}^{\text {' }}$$ is fixed on mass '$$\mathrm{m}$$ ' which is attached to two springs of spring constant $$\mathrm{k}$$. In figure (B), mass '$$\mathrm{m}$$' is attached to two springs of spring constant '$$\mathrm{k}$$' and '$$2 \mathrm{k}^{\prime}$$. If mass '$$\mathrm{m}$$' in (A) and in (B) are displaced by distance '$$x^{\prime}$$ horizontally and then released, then time period $$\mathrm{T}_{1}$$ and $$\mathrm{T}_{2}$$ corresponding to $$(\mathrm{A})$$ and (B) respectively follow the relation.