 JEE Mains Previous Years Questions with Solutions

4.5
star star star star star
1

JEE Main 2016 (Offline)

A particle performs simple harmonic motion with amplitude $A.$ Its speed is trebled at the instant that it is at a distance ${{2A} \over 3}$ from equilibrium position. The new amplitude of the motion is:
A
$A\sqrt 3$
B
${{7A} \over 3}$
C
${A \over 3}\sqrt {41}$
D
$3A$

Explanation

We know that $V = \omega \sqrt {{A^2} - {x^2}}$

Initially $v = \omega \sqrt {{A^2} - {{\left( {{{2A} \over 3}} \right)}^2}}$

Finally $3v = \omega \sqrt {A_{new}^2 - {{\left( {{{2A} \over 3}} \right)}^2}}$

where ${A_{new}}$ = final amplitude (Given at $x = {{2A} \over 3},$ velocity to trebled)

On dividing we get ${3 \over 1} = {{\sqrt {A_{new}^2 - {{\left( {{{2A} \over 3}} \right)}^2}} } \over {\sqrt {{A^2} - {{\left( {{{2A} \over 3}} \right)}^2}} }}$

$9\left[ {{A^2} - {{4{A^2}} \over 9}} \right] = A_{new}^2 - {{4{A^2}} \over 9}$

$\therefore$ $A_{new} = {{7A} \over 3}$
2

JEE Main 2015 (Offline)

For a simple pendulum, a graph is plotted between its kinetic energy $(KE)$ and potential energy $(PE)$ against its displacement $d.$ Which one of the following represents these correctly?
$(graphs$ $are$ $schematic$ $and$ $not$ $drawn$ $to$ $scale)$
A B C D Explanation

$K.E = {1 \over 2}k\left( {{A^2} - {d^2}} \right)$

and $P.E. = {1 \over 2}k{d^2}$

At mean position $d=0.$ At extremes positions $d=A$
3

JEE Main 2015 (Offline)

A pendulum made of a uniform wire of cross sectional area $A$ has time period $T.$ When an additional mass $M$ is added to its bob, the time period changes to ${T_{M.}}$ If the Young's modulus of the material of the wire is $Y$ then ${1 \over Y}$ is equal to :
($g=$ $gravitational$ $acceleration$)
A
$\left[ {1 - {{\left( {{{{T_M}} \over T}} \right)}^2}} \right]{A \over {Mg}}$
B
$\left[ {1 - {{\left( {{T \over {{T_M}}}} \right)}^2}} \right]{A \over {Mg}}$
C
$\left[ {{{\left( {{{{T_M}} \over T}} \right)}^2} - 1} \right]{A \over {Mg}}$
D
$\left[ {{{\left( {{{{T_M}} \over T}} \right)}^2} - 1} \right]{{Mg} \over A}$

Explanation

As we know, time period, $T = 2\pi \sqrt {{\ell \over g}}$

When a additional mass $M$ is added then

${T_M} = 2\pi \sqrt {{{\ell + \Delta \ell } \over g}}$

${{{T_M}} \over T} = \sqrt {{{\ell + \Delta \ell } \over \ell }}$

or, $\,\,{\left( {{{{T_M}} \over T}} \right)^2} = {{\ell + \Delta \ell } \over \ell }$

or, $\,\,{\left( {{{{T_M}} \over T}} \right)^2} = 1 + {{Mg} \over {Ay}}$

$\left[ \, \right.$ as $\left. {\Delta \ell = {{Mg\ell } \over {Ay}}\,} \right]$

$\therefore$ ${1 \over y} = \left[ {{{\left( {{{{T_M}} \over T}} \right)}^2} - 1} \right]{A \over {Mg}}$
4

JEE Main 2014 (Offline)

A particle moves with simple harmonic motion in a straight line. In first $\tau s,$ after starting from rest it travels a distance $a,$ and in next $\tau s$ it travels $2a,$ in same direction, then:
A
amplitude of motion is $3a$
B
time period of oscillations is $8\tau$
C
amplitude of motion is $4a$
D
time period of oscillations is $6\tau$

Explanation

In simple harmonic motion, starting from rest,

At $t=0,$ $x=A$

$x = A\cos \omega t\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( i \right)$

When $t = \tau ,\,\,x = A - a$

When $t = 2\,\tau ,\,x = A - 3a$

From equation $(i)$

$A - a = A\cos \omega \,\tau \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$

$A - 3a = A\cos 2\omega \,\tau \,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {iii} \right)$

As $\cos 2\omega \,\tau = 2{\cos ^2}\omega \tau - 1...\left( {iv} \right)$

From equation $(ii),$ $(iii)$ and $(iv)$

${{A - 3A} \over A} = 2{\left( {{{A - a} \over A}} \right)^2} - 1$

$\Rightarrow {{A - 3a} \over A} = {{2{A^2} + 2{a^2} - 4Aa - {A^2}} \over {{A^2}}}$

$\Rightarrow {A^2} - 3aA = {A^2} + 2{a^2} - 4Aa$

$\Rightarrow 2{a^2} = aA \Rightarrow \,\,\,\,\,\,\,A = 2a$

$\Rightarrow {a \over A} = {1 \over 2}$

Now, $A-a=A$ $\cos \omega \tau$

$\Rightarrow \cos \omega \tau = {{A - a} \over A} \Rightarrow \,\,\cos \omega \tau = {1 \over 2}$

or, ${{2\pi } \over T}\tau = {\pi \over 3} \Rightarrow \,\,\,T - 6\,\tau$