Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A) : A simple pendulum is taken to a planet of mass and radius, 4 times and 2 times, respectively, than the Earth. The time period of the pendulum remains same on earth and the planet.
Reason (R) : The mass of the pendulum remains unchanged at Earth and the other planet.
In the light of the above statements, choose the correct answer from the options given below :
A simple pendulum doing small oscillations at a place $$R$$ height above earth surface has time period of $$T_1=4 \mathrm{~s}$$. $$\mathrm{T}_2$$ would be it's time period if it is brought to a point which is at a height $$2 \mathrm{R}$$ from earth surface. Choose the correct relation [$$\mathrm{R}=$$ radius of earth] :
In simple harmonic motion, the total mechanical energy of given system is $$E$$. If mass of oscillating particle $$P$$ is doubled then the new energy of the system for same amplitude is: