1
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
An ideal gas enclosed in a vertical cylindrical container supports a freely moving piston of mass $$M.$$ The piston and the cylinder have equal cross sectional area $$A$$. When the piston is in equilibrium, the volume of the gas is $${V_0}$$ and its pressure is $${P_0}.$$ The piston is slightly displaced from the equilibrium position and released,. Assuming that the system is completely isolated from its surrounding, the piston executes a simple harmonic motion with frquency
A
$${1 \over {2\pi }}\,{{A\gamma {P_0}} \over {{V_0}M}}$$
B
$${1 \over {2\pi }}\,{{{V_0}M{P_0}} \over {{A^2}\gamma }}$$
C
$${1 \over {2\pi }}\,\sqrt {{{A\gamma {P_0}} \over {{V_0}M}}} $$
D
$${1 \over {2\pi }}\,\sqrt {{{M{V_0}} \over {A\gamma {P_0}}}} $$
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If a simple pendulum has significant amplitude (up to a factor of $$1/e$$ of original ) only in the period between $$t = 0s\,\,to\,\,t = \tau \,s,$$ then $$\tau \,$$ may be called the average life of the pendulum When the spherical bob of the pendulum suffers a retardation (due to viscous drag) proportional to its velocity with $$b$$ as the constant of proportionality, the average life time of the pendulum is (assuming damping is small) in seconds :
A
$${{0.693} \over b}$$
B
$$b$$
C
$${1 \over b}$$
D
$${2 \over b}$$
3
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
Two particles are executing simple harmonic motion of the same amplitude $$A$$ and frequency $$\omega $$ along the $$x$$-axis. Their mean position is separated by distance $${X_0}\left( {{X_0} > A} \right)$$. If the maximum separation between them is $$\left( {{X_0} + A} \right),$$ the phase difference between their motion is:
A
$${\pi \over 3}$$
B
$${\pi \over 4}$$
C
$${\pi \over 6}$$
D
$${\pi \over 2}$$
4
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
A mass $$M,$$ attached to a horizontal spring, executes $$S.H.M.$$ with amplitude $${A_1}.$$ When the mass $$M$$ passes through its mean position then a smaller mass $$m$$ is placed over it and both of them move together with amplitude $${A_2}.$$ The ratio of $$\left( {{{{A_1}} \over {{A_2}}}} \right)$$ is :
A
$${{M + m} \over M}$$
B
$${\left( {{M \over {M + m}}} \right)^{{1 \over 2}}}$$
C
$${\left( {{{M + m} \over M}} \right)^{{1 \over 2}}}$$
D
$${M \over {M + m}}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12