If $$\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\ldots+\frac{1}{\sqrt{99}+\sqrt{100}}=m$$ and $$\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\ldots+\frac{1}{99 \cdot 100}=\mathrm{n}$$, then the point $$(\mathrm{m}, \mathrm{n})$$ lies on the line
Let $$\mathrm{d}$$ be the distance of the point of intersection of the lines $$\frac{x+6}{3}=\frac{y}{2}=\frac{z+1}{1}$$ and $$\frac{x-7}{4}=\frac{y-9}{3}=\frac{z-4}{2}$$ from the point $$(7,8,9)$$. Then $$\mathrm{d}^2+6$$ is equal to :
If the function $$f(x)=\frac{\sin 3 x+\alpha \sin x-\beta \cos 3 x}{x^3}, x \in \mathbf{R}$$, is continuous at $$x=0$$, then $$f(0)$$ is equal to :
Let the line $$2 x+3 y-\mathrm{k}=0, \mathrm{k}>0$$, intersect the $$x$$-axis and $$y$$-axis at the points $$\mathrm{A}$$ and $$\mathrm{B}$$, respectively. If the equation of the circle having the line segment $$A B$$ as a diameter is $$x^2+y^2-3 x-2 y=0$$ and the length of the latus rectum of the ellipse $$x^2+9 y^2=k^2$$ is $$\frac{m}{n}$$, where $$m$$ and $$n$$ are coprime, then $$2 \mathrm{~m}+\mathrm{n}$$ is equal to