Let a circle C of radius 1 and closer to the origin be such that the lines passing through the point $$(3,2)$$ and parallel to the coordinate axes touch it. Then the shortest distance of the circle C from the point $$(5,5)$$ is :
Let $$f(x)=x^5+2 x^3+3 x+1, x \in \mathbf{R}$$, and $$g(x)$$ be a function such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. Then $$\frac{g(7)}{g^{\prime}(7)}$$ is equal to :
The coefficients $$a, b, c$$ in the quadratic equation $$a x^2+b x+c=0$$ are chosen from the set $$\{1,2,3,4,5,6,7,8\}$$. The probability of this equation having repeated roots is :
If the system of equations
$$\begin{array}{r} 11 x+y+\lambda z=-5 \\ 2 x+3 y+5 z=3 \\ 8 x-19 y-39 z=\mu \end{array}$$
has infinitely many solutions, then $$\lambda^4-\mu$$ is equal to :