Consider the following two statements :
Statement I: For any two non-zero complex numbers $$z_1, z_2,(|z_1|+|z_2|)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right) \text {, and }$$
Statement II : If $$x, y, z$$ are three distinct complex numbers and $$\mathrm{a}, \mathrm{b}, \mathrm{c}$$ are three positive real numbers such that $$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$$, then $$\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$$.
Between the above two statements,
Let A and B be two square matrices of order 3 such that $$\mathrm{|A|=3}$$ and $$\mathrm{|B|=2}$$. Then $$|\mathrm{A}^{\mathrm{T}} \mathrm{A}(\operatorname{adj}(2 \mathrm{~A}))^{-1}(\operatorname{adj}(4 \mathrm{~B}))(\operatorname{adj}(\mathrm{AB}))^{-1} \mathrm{AA}^{\mathrm{T}}|$$ is equal to :
Let a circle C of radius 1 and closer to the origin be such that the lines passing through the point $$(3,2)$$ and parallel to the coordinate axes touch it. Then the shortest distance of the circle C from the point $$(5,5)$$ is :
Let $$f(x)=x^5+2 x^3+3 x+1, x \in \mathbf{R}$$, and $$g(x)$$ be a function such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. Then $$\frac{g(7)}{g^{\prime}(7)}$$ is equal to :