1
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $S_n$ denote the sum of the first $n$ terms of an arithmetic progression. If $S_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $\mathrm{S}_{15}-\mathrm{S}_5$ is equal to :
A
800
B
890
C
790
D
690
2
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $m$ and $n$ be the coefficients of seventh and thirteenth terms respectively

in the expansion of $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
A
$\frac{1}{9}$
B
$\frac{1}{4}$
C
$\frac{4}{9}$
D
$\frac{9}{4}$
3
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f(x)=\left\{\begin{array}{l}x-1, x \text { is even, } \\ 2 x, \quad x \text { is odd, }\end{array} x \in \mathbf{N}\right.$.

If for some $\mathrm{a} \in \mathbf{N}, f(f(f(\mathrm{a})))=21$, then $\lim\limits_{x \rightarrow \mathrm{a}^{-}}\left\{\frac{|x|^3}{\mathrm{a}}-\left[\frac{x}{\mathrm{a}}\right]\right\}$, where $[t]$ denotes the greatest integer less than or equal to $t$, is equal to :
A
169
B
121
C
225
D
144
4
JEE Main 2024 (Online) 1st February Evening Shift
Numerical
+4
-1
Change Language
Three points $\mathrm{O}(0,0), \mathrm{P}\left(\mathrm{a}, \mathrm{a}^2\right), \mathrm{Q}\left(-\mathrm{b}, \mathrm{b}^2\right), \mathrm{a}>0, \mathrm{~b}>0$, are on the parabola $y=x^2$. Let $\mathrm{S}_1$ be the area of the region bounded by the line $\mathrm{PQ}$ and the parabola, and $\mathrm{S}_2$ be the area of the triangle $\mathrm{OPQ}$. If the minimum value of $\frac{\mathrm{S}_1}{\mathrm{~S}_2}$ is $\frac{\mathrm{m}}{\mathrm{n}}, \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\mathrm{m}+\mathrm{n}$ is equal to __________.
Your input ____
JEE Main Papers
2023
2021
EXAM MAP