1
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the mirror image of the point $P(3,4,9)$ in the line

$\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}$ is $(\alpha, \beta, \gamma)$, then 14 $(\alpha+\beta+\gamma)$ is :
A
102
B
138
C
132
D
108
2
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $S_n$ denote the sum of the first $n$ terms of an arithmetic progression. If $S_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $\mathrm{S}_{15}-\mathrm{S}_5$ is equal to :
A
800
B
890
C
790
D
690
3
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $m$ and $n$ be the coefficients of seventh and thirteenth terms respectively

in the expansion of $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
A
$\frac{1}{9}$
B
$\frac{1}{4}$
C
$\frac{4}{9}$
D
$\frac{9}{4}$
4
JEE Main 2024 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f(x)=\left\{\begin{array}{l}x-1, x \text { is even, } \\ 2 x, \quad x \text { is odd, }\end{array} x \in \mathbf{N}\right.$.

If for some $\mathrm{a} \in \mathbf{N}, f(f(f(\mathrm{a})))=21$, then $\lim\limits_{x \rightarrow \mathrm{a}^{-}}\left\{\frac{|x|^3}{\mathrm{a}}-\left[\frac{x}{\mathrm{a}}\right]\right\}$, where $[t]$ denotes the greatest integer less than or equal to $t$, is equal to :
A
169
B
121
C
225
D
144
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12